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Cloud Base Height Retrieval from Portable 
Automated Lidar Data by Wavelet Analysis
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Abstract— The Portable Automated Lidar (PAL) has been shown to be effective in observing cloud dynamics and aerosol optical 
properties in the troposphere.  The continuous monitoring of the atmosphere, however, has indicated that the detection range is rather 
limited for the daytime data because of the background noise from the sky radiance. Here we apply the wavelet denoising method to 
improve the Signal-to-Noise Ratio (SNR) of the time-dependent lidar data. As a result, SNR increased by 7.9% when compared to data 
smoothing based on moving average. Moreover, the analysis of wavelet coefficients enables direct retrieval of the cloud base height. It is 
found through manual comparison that this method shows 4.4 times less false positive and 2.1 times less false negative detection on 
average, when compared to a conventional method such as the threshold method.

Index Terms— Lidar, Cloud Base Height, Portable Automated Lidar, Wavelet Analysis, Signal Processing, Clouds, Laser.  
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1 INTRODUCTION                                                                     
Lidar  is  a  useful  tool  in  monitoring  the  atmosphere.  Behavior  of 
clouds  and aerosols,  in  particular,  can be elucidated  by means of 
elastic, backscattering lidars. The portable automated lidar (PAL) de-
veloped by the Center for Environmental Remote Sensing (CEReS), 
Chiba University, has the capability of unattended, long-term opera-
tion.  Lagrosas et al. [1] demonstrated the effectiveness of the PAL 
system by observing  the  oscillatory behavior  of  the  aerosol  layer 
height, vertical motion of the aerosol layer, and speed of rain drops. 
A good correlation was found between the intensity of backscattered 
light  and  suspended  particulate  matter  concentration  inside  the 
boundary layer. Also, mass extinction efficiency (MEE), defined as 
the ratio of aerosol extinction to its mass concentration, was com-
puted together with ground-based SPM measurements [2,3].

The lidar technique has good flexibility and holds promise for 
providing  accurate  measurements  of  wide  variety of  aerosols  and 
meteorological parameters of the atmosphere [4]. However, noise in-
herent  in  the  system during  observation  degrades  the  information 
embedded in the lidar signal.  Due to the inverse square nature of the 
lidar data, signal to noise ratio of the system decreases with range. In 
practice,  procedures are taken to  improve the lidar  signal.  For in-
stance, the received power P(r, λ)  at range r and wavelength λ is the 
average of 28000 (1.4 kHz in 20 s) laser pulse shots for a typical 
PAL signal.  This process reduces most of the random interference 
and digitization noise of the system, but considerable noise will still 
affect the data especially at longer ranges. In addition, moving aver-
age is often employed to further improve lidar data. This process, 
however, cannot eliminate speck values, especially negative values 
produced by noise [5].    

The purpose of this study is to use wavelet analysis to improve 
the quality of PAL data and use the wavelet transform to determine 
cloud occurrence and/or cloud base height (CBH). Since the mathe-
matical complexity of wavelet analysis requires intensive and time 
consuming programming, the analysis in this study is based on an 
open source Matlab functions, called Wavelab, developed by Buck-

heit et al. [6].

2. THEORY

2.1 Lidar Theory
The  intensity  of  the  backscattered  beam  is  dependent  on  the 
backscattering properties of the atmosphere at wavelength λ and dis-
tance r, which is in turn, dependent on the quantity, size, shape and 
the refractive  index of the particles causing the backscattering. The 
backscattered intensity also depends on the round trip atmospheric 
attenuation which characterizes the transmission properties of the at-
mosphere.
The range-corrected, backscattered signal X(r, λ) is given by

X (r,λ) =P (r,λ) r2 (1)

where  P(r,λ)  is  the  power  scattered  from  a  target.   Although  the 
backscattered  signal  inherently includes  multiple  scattering,  a  narrow 
FOV of the PAL systems (0.2 mrad) ensures the detection of mostly sin-
gle scattering events. Since the PAL system takes slant path measure-
ments with an elevation angle θ (38 deg), here we show the raw signal as 
P(z,λ), where z=r sin θ describes the height of the target.

2.2 Wavelet transform
The wavelet function ψs,τ (t) can be expressed in terms of the mother 
wavelet ψ by

(2)

where  s and  τ are scaling and translation parameters, respectively. 
The continuous wavelet transform is formally given by [7]

(3)

where f(t) is the function of the signal, which is decomposed to the 
basis function ψs,τ(t) called wavelets. The variables s and τ  represent 
the new dimension after the wavelet transform. Conversely, the in-
verse wavelet transform is given by

(4)
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A wavelet  function  ψ(t) is  defined to satisfy the following condi-
tions: (i)  its square integral is finite, called the admissibility condi-
tion

(5)

and (ii) its integral in the time domain is zero:

(6)

Continuous  wavelet  transform (CWT) cannot  be  practically  com-
puted  using  analytical  equations.  Therefore,  we  have  the  discrete 
wavelet  transform (DWT).  In  CWT,  there  is  no  constraint  in  the 
value of s and τ, and they can in principle map the whole (s,τ) plane. 
In the DWT, however, the possible values of (s,τ) are restricted to

(7)
and

(8)

where k and j are integers. The wavelet analysis of lidar signal in this 
study is based on orthonormal wavelet bases with s0 = 2 and τ0 = 1. 
This is referred to as the dyadic dilations and translations. 

2.3 Lidar signal denoising
Wavelet based denoising differs from traditional filtering approaches 
in that it is nonlinear due to a thresholding step. It employs thresh-
olding in the wavelet domain and has been shown to be asymptoti-
cally near optimal for a wide class of signals corrupted by additive 
white  Gaussian noise [8].  Denoising by thresholding involves  the 
following steps: the first step is to perform a wavelet transform of a 
noisy data, second is to perform a thresholding where the threshold 
depends on the noise variance, and third, the coefficients obtained 
from step 2 are padded with zeros to produce a wavelet transform 
and this is inverted to obtain a denoised signal. There are two ver-
sions of thresholding, hard and soft threshold [9]. In hard threshold-
ing, any coefficients  less than or equal to the threshold are set to 
zero, whereas in soft thresholding, any coefficients less than or equal 
to the threshold are set to zero, then the threshold is subtracted from 
any coefficients greater than the threshold. In this study, hard thresh-
olding is used so as to further discriminate cloud signals with the 
background noise. The advantage of wavelet-based denoising is that 
noise is largely suppressed while features in the original signal re-
main mostly unchanged, in contrast with traditional linear methods 
of smoothing which compromise noise suppression with the broad-
ening of signal features.

   Real lidar return signals tend to have a dominant low frequency 
component, and almost all of the high frequency component of the 
signal can be assumed to be noise [10]. Therefore, by reducing the 
value of the scale in the high frequency component, particularly j = 8 
and j = 9 of the signal by hard thresholding method, noise in the sig-
nal can be suppressed in an effective way.  Fang and Huang [10] 
demonstrated the advantage of wavelet denoising over a more tradi-
tional  approach  using  Butterworth  filter.   This  study  follows  the 
methodology of Fang and Huang, on the other hand, we use the sim-
pler  Daubechies wavelet  (Sec. 4.1) and hard thresholding and ex-
tended the analysis to a new cloud retrieval method.

2.4 Cloud base height detection using wavelet 
coefficients

One aim of this study is to present a new method in cloud base 
height detection with the use of wavelet decomposition analysis. A 
cloud in a lidar profile is indicated by a sudden increase of backscat-
tered lidar signal due to the high backscattering coefficient inherent 
to clouds. Traditionally, the threshold method is used to determine 
the presence of a cloud in a lidar profile [11].  Other methods include 
detection of zero crossing in the derivative of the signal [12] and 
compare lidar signals to archived clear sky profiles [13].  Following 
these methods, noise estimates and/or smoothing are used to reject 
false peaks from noise. In this  study,  threshold method is used to 
compare with the wavelet retrieval method.  A threshold value is set 
to distinguish clouds from specks arising from noise, and any sudden 
increase in the signal intensity exceeding the threshold value is con-
sidered as a cloud. The threshold method in cloud determination is 
effective in cases where there is sufficient signal-to-noise ratio, but is 
ineffective in determining high altitude clouds where lidar  signals 
tend to show lower SNR due to the background solar radiation [14]. 
A sudden  increase  in  the  backscattered  signal  is  reflected  in  the 
wavelet coefficient in the time-scale domain. Larger wavelet coeffi-
cients in the time-scale domain corresponding to a cloud consistently 
appear in scale depths j = 9 to 5.  Starting from the finest scale (j = 
9),  information  about  the  different  frequency  components  of  the 
cloud is contained through j = 5, below which the resolution is too 
low to contain any details of a cloud.  The detailed result is shown in 
Section 4.

3 PAL SYSTEM

The portable automated lidar system is placed at Chiba Prefectural 
Environmental Research Center (CERC) (35.52N, 140.07E, about 40 
km southeast of Tokyo). The PAL system is installed indoors at a 
height  of  about  4.5  m from the  ground  level. The laser  beam is 
pointed toward the north sky with a fixed elevation angle of 38o. The 
distance between the lidar location and the seashore (east coast of the 
Tokyo bay) is about 2.5 km in the laser beam direction.
The main components of the PAL system are a pulse laser mounted 
on a 20 cm diameter telescope, a photo-multiplier detector, a signal 
scaler and a personal computer (PC) for data acquisition and system 
control. Table 1 summarizes the system specification. A detailed de-
scription can be found elsewhere [1]. In order to reduce the back-
ground due to the skylight during daytime, a narrow field-of-view 
angle of 0.2 mrad and a narrow filter bandwidth of 0.5 nm are em-
ployed. The laser beam is reflected by two prisms so that its axis co-
incides with the optical axis of the telescope. Automatic realignment 
is  done  every  15  min  by adjusting  the  orientation  of  one  of  the 
prisms. The backscattered signal is collected by the telescope, de-
tected by the photo-multiplier tube in photon-counting mode, aver-
aged for 20 s, and stored in the PC.

The  PAL system was continuously operated from  December 
2002 to  December  2007,  with  occasional  maintenance.  For  this 
study, a total of 30780 hours of data or approximately 5.5 million li-
dar profiles are used to determine the strength of wavelet decomposi-
tion analysis on lidar signals.
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TABLE 1
SPECIFICATION OF THE PAL SYSTEM.

Transmitter
Laser LD-pumped  Q-switch 

Nd:YAG
Wavelength 532 nm
Laser Pulse Width 50 ns
Repetition Rate 1.4 kHz
Laser Pulse Energy 15 µJ
Laser Beam Divergence 50 µrad
Receiver
Telescope Diameter 20 cm
Telescope Type Cassegrain
Field of View 0.2 mrad
Filter Bandwidth 0.5 nm
Detector PMT (HPK-R1924P）
Quantum Efficiency 10 - 25% 

4. RESULTS AND DISCUSSION

4.1 Lidar data denoising
The Daubechies4 wavelet was selected for the wavelet decomposi-
tion.  This  wavelet  provides a powerful  tool for  signal  processing. 
The Daubechies wavelet is simple enough as it is defined in the same 
way as the Haar wavelet transform, which is the simplest wavelet 
transform, that is by computing the running averages and differences 
via scalar products with scaling signals and wavelets.  Haar trans-
form performs an average and difference on a pair of values, then 
shifts over by 2 values for the next pair.  If a sudden  change takes 
place from an even value to an odd value, the change will not be re-
flected in the high frequency coefficients.  Daubechies, on the other 
hand, also shifts by 2 elements each step but averages and differ-
ences are calculated over 4 elements.  This use of “overlapping win-
dows” enables high frequency coefficient spectrum to reflect all high 
frequency changes, making this wavelet useful in signal compression 
and noise removal [15].

   (a)

(b)

(c)

(d)

Figure 1. (a) shows a simulated lidar signal with additive white Gaussian 
noise and  (b) is its corresponding time-scale domain.  (c) is the wavelet 
denoised “noisy” data and (d) its corresponding time-scale domain graph.
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Figure 1 (a) shows a simulated lidar profile (using extinction coeffi-
cient  profile  derived  from LOWTRAN7 [16]  and  standard  atmo-
spheric model US76) with additive white Gaussian noise with zero 
mean and Fig. 1 (c) shows the same profile after removing the high 
frequency component.  Figure 1 (b) and (d) show the corresponding 
dyadic sampling in the time-scale (frequency) domain for the noisy 
and denoised profiles, respectively.  The horizontal axis, originally 
accounting for time, is converted to height for ease of the compari-
son with the lidar profile, while the vertical axis shows the wavelet 
coefficient of scale depth ranging from 0 to  j-1, where higher fre-
quency components lie closer to one another (j in the figures is equal 
to 10, corresponding to a dyadic signal length of 210=1024).  Wave-
lets can be translated to 2(scale depth) points on each scale depth.
Theoretically, it  is possible to choose a threshold value without  a 
priori knowledge of the signal: a value at four times the standard de-
viation  σ, for example,  would eliminate 99.9% of the  noise  magni-
tude. Here, we set the threshold value at 4.5σ to further eliminate the 
noise signal energy.   The effectiveness of the denoising is quantita-
tively measured by

(9)

where Asignal and Anoise are the root mean square amplitude of the sig-
nal and noise,  respectively.   Comparing the  SNR increase of  real 
PAL data using wavelet denoising and moving average, the moving 
average produced an increase of 17.11 db SNR, average for all 5.5 
million profiles, while wavelet based denoising produced an increase 
of 18.46 db, a 7.9% increase in SNR.  Although this is  a relatively 
modest increase, the preservation of features due to cloud peak inten-
sities is an obvious advantage of the wavelet denoising, as discussed 
in the following.
4.2 Cloud Base Height determination
Figure 2 (a) shows a noisy lidar profile obtained by adding a thin 
cloud at approximately 4 km to the profile presented in the previous 
section. The corresponding diagram in the time-scale domain (Fig. 2 
(b)) shows a distinct negative coefficient that indicates the sudden 
change in the signal profile due to the presence of the cloud.  A real 
PAL data and it's time-scale domain graph shows similar characteris-
tics as illustrated in Fig. 3 (a) and (b).  Figure 4 (a) shows another 
simulated profile with cloud which is optically thinner and higher in 
altitude to simulate a low SNR condition and Fig. 4 (b) is the corre-
sponding time-scale domain graph.  Figure 5 shows a similar low 
SNR condition PAL data.

(a)

(b)

Figure 2. (a) A simulated lidar with high intensity backscattered signal sim-
ulating a cloud at 4 Km and (b) its corresponding time-scale graph.

(a)

(b)

Figure 3. (a) A typical PAL profile data with cloud at approximately 2.9 km 
and (b) its corresponding time-scale graph
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       (a)

 (b)

Figure 4. (a) A simulated lidar signal with optically thin cloud at 8.5 Km 
and (b) its corresponding time-scale graph. 

       (a)

         (b)

Figure 5. (a) A typical PAL signal with optically thin cloud at 7 Km and  (b) 
its corresponding time-scale graph.

Since there are no available CBH observations other than the PAL 
system,  we  validated  the  wavelet-based  retrieval  method  and  the 
threshold method with visual inspection of cloud occurrences.  Here, 
we define  false  positive  error  as  cloud  detected  by the  algorithm 
without visually discernible clouds and  false negative error as cloud 
not detected by the algorithm on visually apparent clouds.  Relative 
to the total number of profiles with clouds derived from manual in-
spection, the wavelet analysis detected 3.5% false positives while the 
traditional threshold method yielded 15.2% false positive detections, 
giving 4.37 times more false positive detection for the entire 30780 
hr PAL dataset.  On the other hand, of all the derived cloud occur-
rences,  there  is  2.2%  and  4.6% false  negative  detections  by  the 
wavelet and threshold method, respectively, indicating a difference 
of 2.1 times.  Fig. 6 and 7 show a typical example of cloud base re-
trieval time height index (THI) graph by wavelet analysis and thresh-
old method, respectively.  Pal data spans from 1700H Japan Standard 
Time (JST) of 28 December 2004 to 0600H the next day.  False posi-
tives are highlighted by the rectangle and false negatives are encir-
cled in both figures (Fig. 6 and 7).  Furthermore, false positive detec-
tions did not vary much for low (below 5 km) and high (above 5 km) 
altitudes. For the threshold method, cloud free conditions produced 
more false positive detections above 5 km while low altitude false 
positive detections appeared right above detected clouds, this is due 
to the severe attenuation of the laser beam by low lying optically 
thick clouds that degrades SNR above the clouds. Table 2 shows the 
summary of the comparison between the wavelet and threshold cloud 
retrieval methods.

TABLE 2. COMPARISON OF CLOUD DETECTION USING WAVELET 
ANALYSIS THE THRESHOLD METHOD.

Wavelet Threshold
False positive 3.48% 15.20%
False negative 2.20% 4.55%
Average False positive below 5 km 1.68% 7.09%
Average False positive above 5 km 1.80% 8.11%

    Sample size: 30780 hours
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Figure 6 Cloud base retrieval by wavelet analysis THI PAL graph from 
1700H JST of December 28 to 0600H of December 29 2004.

Figure 7. Cloud base retrieval by threshold method THI PAL graph from 
1700H JST of December 28 to 0600H of December 29 2004.

5 CONCLUSION

We have described a cloud base height determination approach based 
on wavelet  decomposition  analysis.  Wavelets  have  good time-fre-
quency (scale)  localization,  which  makes  it  better  in  representing 
non-repeating  signals.  At  the  same time,  denoising  using  wavelet 
analysis provides a tool appropriate for cloud retrieval with less pro-
cessing time.  Only a single threshold value for denoising and cloud 
retrieval  is  needed for all  profiles in  the wavelet  analysis  method 
while  threshold  method ideally  requires  different  threshold  values 
depending  on  background  noise  conditions.   The  wavelet-based 
cloud retrieval algorithm presented here yields 4.4 times less false 
positive and 2.1 times less false negative detection compared to the 
traditional threshold method.
   The PAL system is effective in the continuous observation of the 
presence of cloud hydrometeors. Together with a robust signal analy-
sis technique, it proves to be an effective multipurpose remote sens-
ing tool in observing the atmosphere. It is particularly superior in de-
tecting optically thin high cirrus clouds over  the observation site. 
Moreover, the interaction between aerosols and clouds is important 

in radiation budget studies, and the large PAL dataset can be used in 
cloud/aerosol transition.
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